Quartic Gaussian and Inverse-Quartic Gaussian radial basis functions: The importance of a nonnegative Fourier transform
نویسندگان
چکیده
منابع مشابه
Stable Computations with Gaussian Radial Basis Functions
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in non-trivial geometries, since the method is meshfree and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly illconditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overco...
متن کاملGaussian Radial Basis Functions for Simulation Metamodeling
This paper presents a novel approach for developing simulation metamodels using Gaussian radial basis functions. This approach is based on some recently developed mathematical results for radial basis functions. It is systematic, explicitly controls the underfitting and overfitting tradeoff, and uses a fast computational algorithm that requires minimal human involvement. This approach is illust...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملThe use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملApproximation of Feature Vectors in Nonnegative Matrix Factorization with Gaussian Radial Basis Functions
Nonnegative Matrix Factorization (NMF) is a feature extraction technique that has already found numerous applications in machine learning and data processing. In some applications, the feature vectors or lateral components can be modeled as linear combinations of basis functions. In this paper, we are concerned with modeling the features with Gaussian Radial Basis Functions (GRBF) that have bec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2013
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2012.10.014